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The stability characteristics of some simple steady magnetohydrodynamic flows 
within an axisymmetric container of arbitrary electrical conductivity are investigated. 
Attention is focused upon rapidly rotating fluids in which the unperturbed velocity 
and magnetic field are axially symmetric and purely zonal. Detailed solutions are 
obtained for the particularly simple basic state representing a rigidly rotating homo- 
geneous fluid with a uniform axial current. The theory of dynamic (dissipationless) 
instabilities is reviewed and its shortcomings are elucidated. A stability criterion is 
derived for an inviscid fluid of small electrical conductivity within a perfectly con- 
ducting axisymmetric container and it is shown that a certain class of inertial modes 
is unstable for any non-zero magnetic field strength. When the effects of container 
conductivity are included i t  is found that a class of slow modes with westward phase 
speed may be unstable. These modes are shown to be unstable within a cylinder but 
appear to be stable within a sphere. The influence of density gradients within a 
spherical container is investigated and i t  is found that for a certain class of exceptional 
slow modes with westward phase speed, a bottom-heavy density gradient is de- 
stabdizing. This surprising behaviour is explained in terms of a new branch of the 
stability curve developed by Eltayeb & Kumar (1977). 

1. Introduction 
One remarkable feature of the earth’s magnetic field is the persistent tendency of 

the non-axisymmetric portion to drift westward relative to the earth’s surface. 
Challenged by this observation, many theoreticians have sought a reason why the 
asymmetric field ought to move westward rather than eastward. Current attention is 
centred on the hydromagnetic-wave theory, initiated by Hide (1966) and Malkus 
(1967) and developed further by Stewartson (1967), Acheson (1972) and others; for 
a review see Hide & Stewartson (1972). This theory identifies the asymmetric field 
and its drift with a slow magnetohydrodynamic wave of planetary scale riding on a 
predominantly zonal field in the earth’s core. The importance of such waves had 
earlier been stressed by Braginskii (19641, who recognized that they broke the force 
of Cowling’s anti-dynamo theorem. Braginskii did not lay particular theoretical stress 
on the direction of wave propagation but saw the interaction of slow waves as the 
primary source of the so-called a-effect, necessary to  maintain the geomagnetic field 
by dynamo action. Braginskii’s ideas have been reviewed by Roberts & Soward 
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(1972). There are, then, two distinct objectives in the study of hydromagnetic waves 
in the core: to explain the westward drift and to  gain some insight into the workings 
of the geodynamo. 

I n  the early development of hydromagnetic-wave theory, diffusive (resistive and 
viscous) and buoyancy effects were ignored and attempts were made to  find dynamic 
magnetic instabilities which are geophysically relevant. Hide (1966) found a class of 
waves which drift westward in a thin spherical shell, but subsequent work by Malkus 
(1967), Stewartson (1967), Wood (1977) and others failed to reveal reasons why 
there should be any preferred direction of propagation in a thick shell or in a full 
sphere for the toroidal magnetic field strengths ( 5  1000 gauss) believed to  exist 
within the core. Malkus did find that a sufficiently strong toroidal field would be 
dynamically unstable to a westward-moving wave but dismissed this case as being 
geophysically irrelevant. Acheson (1 972) showed quite generally for a cylindrical 
geometry that dynamically unstable waves must drift westward. He also stressed 
that the unreasonably large field needed to destabilize the Malkus model was a con- 
sequence of the special form of toroidal field B assumed by Malkus, namely B K s, 
where s is distance from the cylindrical axis of symmetry. Acheson showed that if B 
increases with s more rapidly than sb, a t  least for cylindrical models, the system would 
be subject to a dynamical instability, christened a ‘ field-gradient instability’. We 
derive Acheson’s criterion in 3 2, and in appendix A we show how it can be generalized 
to an arbitrary toroidal field B(s, z ) ,  arbitrary zonal velocity v(s ,  z )  and arbitrary 
axially symmetric density gradient. 

At first sight it appears reasonable to ignore dissipation in the study of hydro- 
magnetic waves in the core since westward drift a t  the current observed rate would 
carry the waves around the earth in less than a thousand years, whereas the free 
decay time of a field of planetary scale may be an order of magnitude greater. However, 
this argument fails to note that the waves observed today have presumably persisted 
over many millennia and have therefore survived dissipative losses. Thus an accurate 
description of the waves must include dissipative effects. With diffusion added, it is 
possible that dissipative effects might work selectively to the advantage of west- 
ward-propagating waves. Further, i t  is possible that some waves which are dynamically 
neutral (in the absence of dissipation) might be diffusively unstable when dissipative 
effects are introduced. As an example of this phenomenon, consider the MAC wavest 
studied by Braginskii (1964, 1967). I n  the absence of diffusive effects, he found a 
class of waves which are convectively unstable provided the buoyancy forces are 
positive (i.e. the fluid is top-heavy). However, studies by Eltayeb & Roberts (1970), 
Eltayeb (1972, 1975), Roberts & Stewartson (1974, 1975) and Eltayeb & Kumar 
( 1977) have clearly established that diffusive convective instabilities can occur for 
much smaller density gradients than can the dynamic convective instabilities found 
by Braginskii. 

We carry these ideas of diffusive destabilization further in the present paper. 
Primarily, we study the effect of Ohmic diffusion upon the stability of MC waves in a 
homogeneous fluid for a variety of container geometries and conductivities, although 

t The acronym MAC st,ands for Magnetic, Archimedean (buoyancy) and Coriolis, the three 
major forces which, together with pressure, control the wave dynamics. Throughout most of 
this paper a 0  shall study the simpler MC waves in which buoyancy is unimportant. 
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the effects of viscous diffusion and density stratification are considered briefly. I n  the 
following paper Soward (1979) studies in detail the effect of Ohmic, viscous and 
thermal diffusion on the stability of MAC waves in a particularly simple cylindrical 
geometry. I n  what follows, we examine some simple magnetic-field configurations 
which are dynamically stable but which are destabilized by the introduction of small 
magnetic diffusivity h (although of course the growth rate of the instability vanishes 
as h --f 0). Although a general theory for these diffusive instabilities in the case of 
infinitely conducting container walls is presented in appendix B, attention in the 
main body of the paper is focused primarily on Malkus’ model, B a s, in order to  
demonstrate most clearly the existence of these new modes of instability for a simple 
basic state which is predicted to  be stable with respect to both Acheson’s field-gradient 
instability and the resistive tearing instability well known in plasma physics (Furth, 
Killeen & Rosenbluth 1963; Gibson & Kent 1971; Baldwin & Roberts 1972). This 
should not, however, be construed as a belief that  the field-gradient mode or the 
tearing mode is irrelevant to geomagnetic theory. A determination of the relative 
importance of these various instabilities to theory of the secular variation must await 
the development of a more realistic mathematical model. 

This paper is organized as follows. I n  $ 2  and appendix A we present a simple 
‘geomagnetohydrodynamic basic state ’ and analyse its stability properties in the 
absence of dissipation, pointing out several of the shortcomings of these dynamic 
instabilities as they relate to the earth’s core. We generalize the instability analysis 
in 9 3 and in appendix B by modelling an inhomogeneous fluid of finite conductivity 
within a perfectly conducting axisymmetric container and find that a new class of 
instabilities, which yields westwardly propagating inertial waves, can occur in a 
homogeneous inviscid fluid for any non-zero value of the magnetic field strength. 
The effect of viscosity upon these unstable waves is considered briefly. The stability 
analysis is further generalized in $ 4  by considering the container to have finite con- 
ductivity. Attention in this section is focused upon the particularly simple basic 
state consisting of a uniform axial electric current flowing through a rigidly rotating 
homogeneous incompressible fluid. It is found that another new class of instabilities 
can occur, this time yielding westwardly propagating slow hydromagnetic waves. 
These instabilities are found to occur in an inviscid fluid confined within a cylindrical 
container. These modes appear to be stable if the container is spherical. The effects 
of density gradients are considered briefly in $ 5 .  where it is found that for certain 
exceptional modes, a bottom-heavy density gradient may be less stable than a top- 
heavy gradient. The results are summarized in $6. In  light of the complexity of the 
analyses of the following sections, we note here that aspects of this work have been 
reviewed by one of us (PHR) in three recent conference proceedings (Roberts 1977, 
1978a, b ) .  

2. Dynamic instabilities 
According to one view, the magnetic field B of the earth is strongest in the core, 

where zonal fluid motions v wrap meridional field lines around the polar axis, creating 
a large toroidal field which is confined to the core. Compared with this field, the 
observed main geomagnetic field is dynamically ineffective and may be neglected in 
a first approximation. Several investigations, reviewed by Roberts & Soward (1972), 
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have therefore concentrated on the ' geomagnetohydrodynamic basic state ' in which 

B = Bo = (pp,)t ST(S, Z )  1,) 
(2.1) 1 v = vo = s&, 2) l,, p = po = p,[l + cys, x ) ] ,  

where (s ,# ,  z )  are cylindrical co-ordinates with polar axis 0 2 ,  1, is the unit vector 
along lines of latitude, p is the density and ,u is the magnetic permeability. Following 
Braginskii (1967), we have introduced the Alfvdn frequency 7 ,  the velocity shear 5 
and the fractional excess in density C, where pr is a reference density. 

I t  is well known from plasma dynamics that, when v = 0 relative to a non-rotating 
reference frame, state (2.1) may be subject to necking instability and to  interchange 
instability, both of which develop on the dynamic (Alfvdnic) time scale. I n  the geo- 
physical context, however, the fluid in the core should closely follow the rigid-body 
rotation of the earth, so that v = S2 x r in (2.1)) where 51 = R1, is the angular velocity 
of the earth and r is the position vector. It has long been recognized that this motion 
should strongly stabilize state (2.  I ) ,  particularly to axisymmetric disturbances. 
Therefore we shall disregard axisymmetric perturbations in this paper. Also we shall 
consider (2.1) to describe the basic state relative to  a reference frame rotating with 
angular velocity S 2 .  

TO illustrate the shortcomings of the theory of dynamic instability as it pertains 
to the geomagnetic field, we shall concentrate on the simple basic state in which 

7 = 7 ( s ) ,  5 = 0) co = 0. (2.2) 

The companion analysis for the more general state (2.1) may be found in appendix A. 
The linear stability of the basic state is examined by writing 

B = B"+B', v = V' 

and neglecting squares and products of all perturbation (primed) fields. Neglecting 
dissipation, the linearized equations are 

aB'/at - (pp,)47a1v'/a# + s(pp,)* v k ( d ~ / d s )  1, = 0, (2.3) 

&'/at + 2S2 x V' = - Vp' + (pp,)-J [7 a, B'/a# + s B ; ( d ~ / d s )  1, - 27B' x l,], (2.4) 

V . v ' = V . B ' = O ,  (2.5) 

where a1/2q5 is differentiation holding 1, and 1, fixed. 
I n  seeking the mode of maximum instability, we follow the method of Gilman & 

Cadez (unpublished) and introduce a right-handed system of local Cartesian co- 
ordinates (v, t, q5) where 1, makes an arbitrary angle x with 1, as shown in figure 1. 
We seek a condition for the system to be stable a t  a local point P to disturbances 
whose wavelength is arbitrarily short in the ( direction. That is, we let a / a t  = I and 
consider Z + 00. From (2.5), v; = O(Z-lvi) and, from the 5 component of (2.4), 

p' = o(l-1v;). 

Assuming the perturbations to depend on @ and t as exp [i(m# - wt ) ] ,  the 1, and 1, 
components of (2.3) and (2.4) are seen to possess non-trivial solutions provided that 

(m272 - w 2 )  [m272 - w2 - ~(d7~/ds) sin2 x] = 4[Qw + m ~ ~ ] ~  sin2 x. (2.6) 
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FIGURE 1. Relationship between the local Cartesian co-ordinates (v, [, 4)  

and the polar co-ordinates ( 8 ,  6,~). 

645 

We may regard this as a local test of stability. If we can find a direction 1, a t  any 
point, P such that (2.6) yields a mode with Im w > 0,  we may infer that the state (2.2) 
is unstable, If no such direction can be found, no matter where P is chosen, the state 
is stable to localized disturbances, although, of course, there is no guarantee that it) 
will be stable to modes of finite wavelength. I n  this sense, (2.6) provides only a neces- 
sary condition for stability. In two cases studied in 94 the condition is sufficient as 
well as necessary. We should not wish to claim this is true for the more general case 
studied in appendix A, in which 5 = 0. It is well known that local tests are unreliable 
guides to the stability of purely hydrodynamic shear flows, tending to predict stability 
when large-scale instability exists. This suggests that the general criterion of appendix 
A provides only a sufficient condition for linear instability. 

It is well known that for large SZ the normal modes of linear perturbations fall 
naturally into two classes: inertial modes with small superimposed magnetic and 
buoyancy effects and MAC waves. For the MAC modes, we may neglect the inertial 
terms, simplifying (2.6) to  

(2.7) m272[m272 - s ( d ~ ~ / d s )  sin2 x] = 4( Q2w + m72)2 sin2 x. 

m2r2 < s ( d ~ ~ / d s )  sin2 x 
A sufficient condition for instability is evidently 

(2.8) 

for some direction 1, a t  some point P .  It is apparent that  the most unstable mode has 
a zonal wavenumber m = 1 and the most unstable direction is 1, = l,, giving 

0 < d(r2/s)/ds. (2.9) 

I n  the absence of shear, instability occurs only a t  points where s-%Bo increases with 
increasing radius. Acheson calls these ' field-gradient instabilities ' . A more general 
criterion for dynamic stability involving shear and buoyancy effects is developed in 
appendix A. I n  later sections, we shall pay particular attention to the basic state in 
which 

r = constant, 5 = Co = 0. (2.10) 
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According to (2.9), this state is dynamically stable with respect to MAC modes or, 
more precisely, MC modes. Also, according to (A 17), inertial instabilities of (2.10) 
will occur if 7 anywhere exceeds Q, but such a value of r is too great to be of geophysical 
interest. We shall see, however, in $4 that state (2.10) is prone to secular instabilities 
and may yield an MC wave with a westward phase speed. 

The foregoing analysis clearly illustrates a fundamental shortcoming of dissipation- 
less models first noted by Roberts & Stewartson (1974): the most unstable modes 
possess infinitesimal wavelengths, which is obviously incompatible with the neglect 
of dissipation. Intuitively one might anticipate that the addition of dissipation to 
the model would set things right by shifting the most unstable mode to a finite wave- 
length. However, a moment's reflexion reveals further shortcomings of the dissipa- 
tionless models which cannot be rectified by the addition of dissipation as we shall 
now explain. Because of the neglect of diffusive effects, the instabilities do not give 
rise to persistent circulatory motions but rather result in a single convulsive over- 
turning to a state of lower energy. Further, this instability acts on a rapid Alfvhic time 
scale. The addition of a small amount of dissipation cannot greatly alter this type 
of instability. If a single dynamic overturning is not the desired type of instability and 
addition of dissipation does not change the type, what then is the correct picture! 

As we shall see, this dilemma is resolved by the occurrence of a new class of inst- 
abilities which grow on a much longer (diffusive) time scale and thus may result in 
persistent motions. What is more, these instabilities can occur with much weaker 
magnetic fields than can the dynamic instabilities just described, making i t  doubtful 
whether dynamic instabilities play any role a t  all in the hydromagnetics of rotating 
fluids (provided Qd2 B A, where d is a typical length scale; this is always the case in 
the systems we are discussing). I n  the following sections we shall add Ohmic dissi- 
pation to our model and demonstrate the existence of these diffusive instabilities. 

3. Diffusive instability within an axisymmetric perfectly conducting 
container 

In this section we consider the stability of a fluid of finite electrical conductivity 
confined within an axisymmetric container which is a perfect conductor. We shall 
find a set of neutrally stable dissipationless modes with frequency wo, then determine 
the perturbation w1 to this frequency as a small amount of magnetic diffusivity h is 
introduced within the fluid. We shall find that certain modes w,, which are predicted 
to be stable by the theory of 3 2 have Im w1 > 0, indicating diffusive instability. Our 
aim is not to locate the most unstable mode but merely to demonstrate that  a class of 
diffusively unstable modes can occur within an axisymmetric perfectly conducting 
container. I n  this section we shall limit our attention to the particularly simple basic 
state (2.10), for which explicit solution of w1 is possible. As in 92, a companion 
analysis for the more general state (2.1) may be found in appendix B. 

One advantage of state (2.10) is that i t  does not evolve on the diffusive time scale 
after Ohmic diffusion is introduced into the problem since V2Bo = 0. However, the 
electric field associated with Bo in the fluid is not in general compatible with the in- 
finite conductivity of the boundary; we must artificially specify a suitable distribution 
of potential differences over the surface W .  To exclude the possibility that these 
sources feed energy into the perturbations directly, we require that they be independent 
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of the perturbations B‘, v‘, etc. With the container specified to be a perfect conductor, 
we simply require n x E’ = 0, where n is the unit normal and E’ is the electric field 
perturbation. Evidently the Poynting flux of energy into the fluid is the same whether 
the basic state is perturbed or not. Since n . V’ = 0 on W ,  the vanishing of n x E‘ 
implies that n x (V x B’) = 0 on W .  The boundary conditions (which are not all 
independent; see Roberts 1967, p. 24) are thus 

n.B’=O,  nx(VxB’ )=O,  n .v ’=O on W .  (3.1) 

The perturbations satisfy (2.3)-(2.5) with the exception that the dissipation term 
hV2B’ must be added to the right-hand side of (2.3). These equations may be made 
dimensionless by the following scaling: length d, time Q-l, velocity Qd, pressure 
p, Q2d2 and magnetic field (,up,)* Qd. Assuming harmonic dependence on q5 and t of 
the form exp [i(m$ - wt)] ,  we obtain 

- iwv‘ + 21, x v’ = - Vp’ + T2[imB’ + 21, x B‘], 

- iwB’ - imv’ = AV2B‘, 
(3.2) 

(3.3) 

where 
V.V‘ = V.B‘ = 0, 

A = h/Qd2 .  

Note that with the simple state (2.10) all effects involving Co, 5 or VT are absent; 
the more general state (2.1) is analysed in appendix B. Also note that w and T here are 
equal to o/Q and T / Q  of 92. 

The induction equation (3.3) may be satisfied by writing 

v’ = ( - wB’ + iAVZB’)/m. 

[ m V  - w2 + iAV2] B‘ -t 2i[ - w - m+ + iRV2] 1, x B’ = - imVp’, 

(3.6) 

(3.7) 

Now the problem is simplified to 

V.B‘ = 0 
with boundary conditions 

n.B’=O,  n x ( V x B ’ ) = O  on W .  (3.9) 

Let us divide the perturbations into a neutral mode designated by the subscript 0 

B’ = Bo+Bl, p’ =po+pl ,  0 = wo+w1 (3.10) 

and a dissipative perturbation designated by the subscript 1 : 

where B,, po and w, are solutions of the problem 

B, - iR1, x B, = - imVQ,, (3.11) 

V.B, = 0, (3.12) 
with 

n.B ,=O on W ,  (3.13) 
where 

(3.14) 

The parameter R, which is equivalent to the factor 2/h employed by Malkus [1967, 
equation (2.27)] effectively replaces w, as the eigenvalue; solving for wo in terms of 
R yields 

w 0 =  [ - l - + ( l + a ~ ~ ) ~ ] ] l R ,  (3.15) 

R E 2(w0 + ~ T ~ ) / ( W ~ T ~  - w;),  Qo E P O / ( ~ ~ T ~  - 0:). 
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a = mR(mR- 2).  

With 7 constant, we see that (3.11) and (2.6) are equivalent provided that 

(3.16) 

R2sin2X = 1. (3.17) 

From this it is apparent that IRI 3 1 .  The solution of (3.15) with the top sign will be 
referred to as the slow or MC mode while that with the bottom sign will be referred 
to as the fast or inertial mode, although this distinction is clearcut only if 7 2  1. 
The factor under the square root in (3.15) is less than unity if a < 0 and, by (3.16), 
a is negative whenever m = 1 and 1 < R < 2. Eigenmodes for which a > 0 will be 
referred to as ordinary modes and those for which u < 0 will be referred to as excep- 
tional modes because, as we shall see, the latter modes have exceptional stability 
properties. It may be seen that the simple basic state (2.10) is dynamically unstable if 

a < - 1 / 7 2 .  (3.18) 

The smallest value of r2 for dynamic instability occurs if m = R = 1, giving 7 2  = 1. 
I n  the geophysical context, r2 -g 1 and (3.18) shows that the basic state is stable with 
respect to the dynamic mode of instability. 

The dissipative perturbation satisfies 

( m 2 ~ 2  - w i )  [B, - iR1, x B,] + imVp, 

+ iAV2[w,(B, + B,) + 2i1, x (B,, + B,)] 

= 2 ~ , [ w , B ,  + il, x B,], 

(3.19) 

V.B, = 0 (3.20) 

n . B , = 0 ,  nx[Vx(B,+B,)]=O on W. (3.21) 

Because (3.11)-(3.13) admit a homogeneous solution, (3.19)-(3.21) will not be 
solvable unless a certain consistency condition is satisfied; this condition will serve 
to determine w1 without actually solving for B, and p,. The consistency condition 
is obtained by scalar multiplying (3.19) by B,*, where an asterisk as a superscript 
denotes a complex conjugate, and integrating the result over the volume V of the 
fluid. Making use of the conjugate of (3.11) and the facts that  

with 

(B, p B .Vpt)dV = (p,B$+p$Bl).ndW = 0 1 F * . v  l +  1 L- 
and 

w 1 ,  x (B, + B,)I = 1, x [V"B, + BJI, 

the consistency integral may be expressed as 

J n . [iwoB,* x V x (B, + B,) + 2 ( B t  x 1,) x V x (B,+ B,)] dW 
W +Iv [(iw,V x B,* + 2V x (B,* x l,)] . V x (B, + B,) d V 

= -2(w,/A)J [w,lB,12+il,x B,.B,*]dV. 
V 

(3.22) 
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With the bounding surface W being a perfect conductor, V x (B,+ B,) is parallel to 
n, making the surface integrals in (3.22) identically zero. Outside any boundary layers 
IV x B,I < IV x B,I and may be neglected in the volume integrals in (3.22). With a 
perfectly conducting boundary, the boundary layer in the fluid near W is weaker than 
for finitely conducting boundaries; specifically, J V  x B,J = O ( J V  x Bol). However, we 
need only the volume integral of V x B, in (3.22) and the contribution from a thin 
boundary layer is sniall and may be neglected. Further, it follows from (3.11) that 

iR/  1, x B,.BtdV = .r (B,I2dV (3.23) 
V V 

and 

- iR/  V x (B: x 1 J . V  x BodV = 1 IV x Bo12dV = k/ IB,I2dV, 
V V V 

say, where k > 0. Now (3.22) is simply 

2( 1 + Rw,) w1 = - ikR( 2 + Rw,). (3.24) 

Instability occurs if Im w1 > 0 or if 

(2 + Rw,)/(  1 + Rw,) < 0. (3.25) 

Instability is clearly impossible if Rw, > 0. From (3.15) we see that (3.25) can be 
satisfied only if we choose the lower sign, making 1 + Rw, negative and hopefully 
2 +  Rw, positive. In order that 2+Rw, be positive we need the factor in the square 
root of (3.15) to be less than unity or equivalently 

a < 0. 

m = l ,  l < R < 2 .  
This inequality is satisfied if 

(3.26) 

(3.27) 

Thus we have found that the particularly simply basic state (2. lo), which represents 
a rigidly rotating homogeneous incompressible fluid with a uniform axial electric 
current, is unstable to a westwardly propagating inertial wave, This instability occurs 
for any non-zero value of the electric current, provided that the magnetic diffusivity 
of the fluid is small (more accurately, provided that pph!2/B2 is small), the magnetic 
diffusivity of the axisymmetric container is much smaller than that of the fluid and 
the fluid is inviscid. It should be remarked that this conclusion was reached without 
explicit solution of the neutral-eigenmode problem (3.1 1)-(3.13). The instability is 
most pronounced for R = 1 + , which gives wo = 2. 

The discovery of a class of unstable inertial modes is rather unexpected. Intu- 
ition tells one that the addition of dissipation to a neutral wave causes i t  to decay 
secularly, and (3.25) predicts just that  behaviour provided that (2 + Rw,)/(l + Rw,) 
is positive, which i t  is for almost all eigenvalues m and R. It is only in the range 
m = 1 ,  1 < R < 2 that  the sense of the secondary currents, which normally help 
dissipate the neutral mode, becomes reversed and leads to enhancement. It is of in- 
terest to note that if WL = 1 and 1 < R < 2, w, < 0 for either sign in (3.15), indicating 
that only westward waves can exhibit this form of instability. We shall see in the 
following section that this is not an isolated phenomenon; we shall find yet another 
set of unstable modes which yield westwardly propagating waves. 
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4. Diffusive instability within an axisymmetric container of arbitrary con- 
duc tivit y 

I n  the previous section we found a class of exceptional waves which, while stable 
with respect to dynamic modes of instability, exhibit an unexpected mode of diffusive 
instability which yields westwardly Propagating inertial waves. That analysis was 
performed assuming the axisymmetric container to be a perfect conductor. I n  this 
section we investigate the effect of finite resistivity of the container and find another 
new mode of diffusive instability which yields a westwardly propagating slow wave. 

If the container has finite conductivity, the discussion following (3.22) is invalid 
and accurate evaluation of the integrals in (3.22) requires detailed analysis of the 
boundary-layer structure near W and solution of the eigenvalue problem (3.11)-(3.13). 
I n  this section we shall proceed with this task for the case of an axisymmetric container 
of arbitrary conductivity. 

The simple basic state (2.10) satisfies V2B0 = 0 and hence does not require any 
volume sources of magnetic field for its maintenance. In  general, the state still requires 
a suitable distribution of potential differences over the surface I$'. However, there 
are two special cases for which the basic state can be maintained by an externally 
applied uniform potential difference: a cylindrical container of arbitrary conductivity 
and an axisymmetric container with conductivity equal to that of the fluid. These 
two cases are important because they are, in theory a t  least, experimentally realizable. 
However the parameter ranges needed make experimental verification a formidable 
task, on a par with modelling a hydromagnetic dynamo in the laboratory. We shall 
ascertain the stability of the basic state (2.10) for two container geometries of parti- 
cular interest, a cylinder and a sphere, and show that the exceptional modes, m = 1 
and 1 < R < 2, are unstable within a cylinder but appear to be stable within a sphere. 

With the addition of boundary resistivity, the governing equations within the fluid 
remain (3.2)-(3.4) but the boundary conditions become 

n . v = O ,  B = B , ,  n x ( V x B ) = r n x ( V x B , )  on W ,  (4.1) 

r = A,/A (4.2) 
where 

and a subscript c denotes parameters and variables associated with the container. 
We now need to determine the magnetic field within the container by solving 

-ioB, = FAV'B, (4.3) 

subject to the further condition that the magnitude of B, remains bounded as the 
distance from Ti' increases. Eliminating v' by (3.6),  the equations in the volume I' 
again are (3.7) and (3.81, while the boundary conditions now are 

om. B = ihn . 'PB, B = B,, n x (V x B) = rn x (V x B,). (4.4) 

The first step is to  solve the exterior equation (4.3) and use the result to  express 
conditions (4.4) entirely in terms of B. Let us introduce a normal co-ordinate function 
p(s,  z )  with the property that 

p = p 0  on W (4.5) 

and p > Po outside V ,  where Po is a constant. By (4.5), n is parallel to Vp. TO simplify 
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the solution of (4.3) we shall assume that IwI 9 I'A so that (4.3) simplifies to the 
boundary-layer equations 

(4.6) 
- iwh; B, = r A  a2Bc/ap2, 1 saBcp/ap+ h-la(sh,B,,)/ay + h,imBc, = 0, 

where y is a third co-ordinate such that (p, y,  q5) form a right-handed orthogonal 
system on W. The parameters h, and h, are the scale factors for the co-ordinates p 
and y.  For cylindrical co-ordinates P = s, h, = 1, Po = 1, y = - 2  and h, = 1 while for 
spherical co-ordinatesp = r ,  h, = 1, Po = 1, y = Band h, = r .  The solution of (4.6) may 
be expressed for Rep. B 1 as 

(4.7) 

(4.8) 

I Bc$ = B$exP[-p.c(P-Po)I, B c y  = B,exp[-qc(P-Po)l, 

Bc, = (s4.A-l rimhBB$ + ~,l~(~h,B,)/aYl exp [ - Q c ( P - P o ) l ,  
where 

q, = h,(-iw/I'A)* = (l-crwi) Iw/2I'Rlth,, 6, = sgnw, 

and we have used (4.4), in part. Substitution of (4.7) into (4.4) yields 

I n  writing (4.9) we have used the fact that I BPI < I B+I or I By[. Also we have neglected 
the fourth condition, which is redundant. If I?+ 0,  (4.9) reduce to (3.9) as they 
should. 

As in $3,  we may divide the perturbation into neutral and dissipative parts by 
(3.10), with the neutral mode satisfying (3.11)-(3.13) and the dissipative mode 
satisfying (3.19) and (3.20) subject to  

i W ,  1,. B, = ihlp. V2(Bo + B,) 

a(sBO4+sBl+)/8/3 = -I'qC(sB,++~B,+) on W .  (4.10) 

~(hyBOy+hyBly)/aP = - I'p.c(hyBo,+hyB,,) 

As in 9 3, we may determine w1 from a consistency integral formed by scalar multi- 
plying (3.19) by B,* and integrating over V .  After some manipulation paralleling that 
of $ 3 the integral may be expressed as 

2( 1 + Rw,) w, = - iAk(2 + Rw,) + AtRw, I /? ,  (4.11) 
where 

I = A b  [ Ip 1 Bo 1 d V ]  -' IF+, 1, . { - (mp,*/wt) V2( B, + B,) 

+iB,*xVx [B,+B,+(2i /wo)1,x (B,+B,)]}dW. (4.12) 

Equation (4.11) is a generalization of (3.24) and reduces to it in the limit I? -+ 0. 

important in the consistency integral (4.12). Assuming that 
Following the argument presented in 3 3, only the boundary-layer portion of B, is 

Bl = Bf+P,, (4.13) 

t This may be seen by noting that l , . V 2 B  = V . [ l g x ( V x B ) ]  and l , x ( V x B )  = 0 on W 
if J? = 0. 
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where the superscript I denotes the interior contribution and the tilde denotes the 
boundary-layer contribution, and that 

B, = bexp[q(P-Po)l, 
(3.19) gives, to dominant order, 

(4.14) 

(4.15) 

(4.16) 
where 

If we have a cylinder, $ = 0, while y% = cos 8 for a sphere. The characteristic equation 
is 

[m2~2 - W: + iAwoq2/h;l2 + [iR(m2~2 - wg) + 2Aq2/h;]2 $2 = 0. (4.17) 

Taking the square root twice, we obtain two modes with positive real part: 

where 

In light of (4.18), we may replace (4.14) by 

[m272 - U: + iAw0q2/h;] by + [ ~ R ( w L ~ T ~  - w t )  + 2Aq2/h;] $b@ = 0, 

[ m V -  W E  + iAwOq2/hj] b, - [iR(m272 - u:) + 2Ap2/h;] $by = 0, 

sqb, + h,la(sh, b,)/ay + imhg b, = 0, 

41. = l,.l,. 

qk = (1 + a*i) hgll  R$l* 1172272 - wfl4 Iw0 T 211.14 (2h)-*,  (4.18) 

(4.19) gk = sgn [( 1 t- R$) (wo T 2y%) (m272 - w33. 

(4.20) I 4, = b+ exp [q+(P - Poll + b- exp [q-(P- Po119 

Bl, = - ib+ exp k+(P - Po11 + ib- exp k- (P  - P o ) ]  

81, = - (sq+)-l [ h y l W , b + ) / a Y  + nzh,b+l exp [q+(P-Po)I 

and obtain the third component from (4.15)3: 

- (sq-)-l [h;la(sh,b_)/ay - mh,b-] exp [q-(P -Po)].  (4.21) 

The functions b, may be determined by satisfaction of conditions (4.10), and (4.10)3. 
Noting that the derivatives of Bo are negligibly small, we obtain 

b* = -*A,~q, / ( rq ,+q*) ,  (4.22) 
where 

A* = BOy+iBo+. (4.23) 
Now on W ,  

1,.V2(Bo+B,) + -- q+ [ a(shflb+)+mhab,] -$ [i a?!??&!d-mh,b- 1 , 
1,. B$ x V x B1 = [b+q+(&$ - iB,*0) + b-p-(Bo*, + iB$+)]/hB, 

1,. B,* x V x (1, x B,) = $[b+q+(B$+ + iB&) + b-q-(B& - iB&)]/hp, 

- 
sh; h, ay 

and (4.12) may be expressed as 
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(4.25) 

I n  writing (4.24) we have retained only the boundary-layer contribut,ions B, in the 
surface integral. If the container is a perfect conductor, bk and 6* = 0 and we recover 
(3.24). Consistency condition (4.11) represents a test of the stability of the neutral 
mode (B,,p,, w,) when dissipation is introduced. To make further progress, we must 
solve (3.1 1)-(3.13) for the neutral mode. We shall do this for two container geometries 
of particular interest: a cylinder and a sphere. 

4.1. A cylindrical container 

If the container is a cylinder, p = s, y = - z, Po = 1, h, = I , @  = 0, hp = 1 and 1, = 1,. 
Also, 

q* = q = (I +ir) (m272-~$1) 12A~,/-) ,  
(4.26) 

With a cylindrical container, we may assume harmonic dependence in the axial 
direction of the form exp (inz). In  this case, (4.11) is simply 

1 u = sgn [wo(n2T2-wf)] ,  6+ = 6 = rq/(I'qc+q). 

[(2( 1 + Rw,) wl + i W 2  + Rw,)lS I Bo12dv 
v 

= - iRAq,G [(mB,+ + nB,,) mp,*/w, + wo( B,I 23 d W .  (4.27) 
I W  

Noting that 
v (1, x V) = - a v p ,  

where v is a solenoidal vector, the curl of (3.11) may be expressed as 

V x B,+iRaB,/& = 0. 

V2B, = R2a2Bo/az2. 
Further, the curl of (4.28) is 

The axial component of this equation is 

(4.28) 

(4.29) 

d2B,,/dz2 + dB,,/sds + [n2(R2 - 1)  - m2/s21 B,, = 0. (4.30) 

This is a Bessel equation; the solution which is finite as s = 0 is 

where 
(4.31) 

(4.32) 

and we have set the amplitude of B, a t  s = 1 equal to unity without loss of generality. 
Using (4.28), we have 

(4.33) Bos = in[mRB,, + ~ d B , , / d s ] / ~ ~ s .  

Jm+1(5) = m(1 f R)  Jm(t% 

Using standard formulae plus 
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(4.34) 

mzr2- w2 J (6s) o m  
J m ( 0  

Po= mn 

Substitution of (4.31) and (4.34) into (4.27) and integration yield 

[2( 1 + Rw,) w1 + iRn2R2(2 + Rw,)] [B(m2 + nZ) - m] 

= - iAq,6(R2- 1) (m2 + n2) m272/w0. (4.35) 

It should be remarked that (4.35), which was obtained assuming )I'R/w,I G 1, is 
identical in the limit I' + 00 with the equation which would have been obtained by 
malysing the flow within an insulating cylindrical container, The basic state is un- 
stable if w1 has positive imaginary part. From (4.35) we see that instability occurs if 

] < o .  n2R2(2+ Rw,) qc&(R2- 1) (m2+n2)m272 + 
2( 1 + Rw,) 2w,( 1 + Rw,) [R(m2 + n2) - m] 

(4.36) 

The first term in (4.36) represents the effect of internal Ohmic dissipation within 
the fluid while the second represents the effects of Ohmic dissipation in the fluid 
boundary layer near s = 1 and within the boundary. If the former is more important 
than the latter, as occurs for example if the boundary is a perfect conductor, then we 
recover the mode of instability discussed in 3 3. With the value of the factor k, intro- 
duced in (3.23), known to be n2R2 for the cylindrical case, we see that the most un- 
stable mode occurs for n2 = co. This is very unusual: the addition of Ohmic dissipation 
to a neutral wave produces an instability which is strongest for short wavelengths. 
This is the result of the curious reversal of the role of Ohmic dissipation for these 
exceptional modes; instead of being most strongly stabilizing for short wavelengths, 
i t  is most strongly destabilizing. The addition of viscous dissipation to the model 
does not remove this curious property but changes the criterion for instability from 
(3.27) to  

where P, = v / h  is the magnetic Prandtl number. As Soward (1979) points out, the 
magnetic Prandtl number of the core, although much smaller than unity, is sufficiently 
large to preclude this mode of instability in the core, To determine the most unstable 
mode i t  is necessary to include dissipation in the basic problem (3.11)-(3.13). It 
should be noted however that we have found a class of wave modes which are unstable 
for any wavenumber n and the fact that  the most unstable mode cannot be found by 
the present, analysis does not detract from the remarkable fact that  such unstable 
modes occur. I n  the following paper, Soward (1979) shows that the most unstable 
mode occurs for n2 = O(A-l), where A 4 1. 

Let us now consider inequality (4.36) in the case where dissipation within and near 
the boundary is more important than internal dissipation, as occurs, for example, if 
the conductivity of the container is finite. Since IR1 > 1 and Re(qc6) > 0, (4.36) 
becomes simply 

w,( 1 +Roo) [R(m2 + n2) - m] < 0. (4.38) 

m = 1, l - [ (1-P, ) / (1+Pm)]2  < T2(2-R)R, (4.37) 
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This inequality cannot be satisfied if R < - 1. If R > 1 then R(m2 + n2) - m > 0 and 
(4.38) may be expressed as 

Rwo(l +Roo) < 0 
or, using (3.15)) 

where a = mR(mR - 2) .  Instability is possible only if we choose the top sign, thus 
selecting the slow mode. Further, we must require 

(1+a72)4T 1 < 0, (4.39) 

m = l ,  1 < R < 2  (4.40) 

to  obtain instability. This criterion is identical to that found previously but now it  is 
the slow mode which is unstable, rather than the fast mode. As before, the unstable 
mode has a westward phase speed. Now the most unstable mode occurs for n2 = 0 
and wo = 0, giving a stationary wave. The boundary-layer analysis is not valid as 
wo + 0, hence the most unstable mode is not accessible to the present analysis. The 
instability of this mode in a cylindrical container is due to the absence of end walls 
on the container. I n  the opposite extreme of a cylinder with end walls but no side 
walls, Soward (1979) finds this mode to be stable. It would be of interest to determine 
the stability of the slow MC modes in a finite cylinder of arbitrary aspect ratio. 

4.2. A spherical container 

If  the container is spherical, the analysis becomes a direct extension of the study by 
Malkus ( 1  967) and we may use his results to obtain solutions of the neutral-eigenmode 
problem (3.11)-(3.13). Our parameter R is related to  his h by hR = 2. The general 
solution of (3.11)-(3.13) for a spherical container can be expressed as a product of 
associated Legendre polynomials Pz.  We wish to  determine whether any of these 
modes can be diffusively unstable. Relying upon the results for the cylindrical con- 
tainer, we shall assume that the ordinary modes, for which R(mR - 2) > 0, are all 
stable and concentrate our search on those exceptional modes for which m = 1 and 
1 < R < 2 .  

Before proceeding with the stability calculation, let us determine whether such 
exceptional modes for the sphere do exist. The eigenvalues R are solutions of the 
equation 

(n + 1) RPk-,( 1/R) = (n  + R) Pk( 1/R) (4.41) 

(see equation (3.12) of Malkus 1967). Analytical and numerical solutions of (4.41) 
reveal that  exceptional modes do exist. The eigenvalues for 3 < n ,< 15 are listed in 
table 1 .  

For each eigenmode, stability is determined by (4.11)) where I is given by (4.24). 
With 7 < 1, wo = - &(2 - R )  72. If A is sufficiently small that internal dissipation is 
negligible compared with dissipation within and near the boundary, (4.11) simplifies to 

0, = - A*R(2 - R )  1/47. (4.42) 

The basic state is unstable if Imo,  > 0 or if I m 1  < 0. Determination of the sign of 
Im I requires numerical evaluation of a complicated integral. I n  light of the fact 
that  the most unstable modes in the cylinder are those for which n2 is small and 
because of the burgeoning complexity of the modes as n - m increases, attention was 
limited to  the first, second and fourth modes listed in table 1.  The details of these 
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n 

3 
4 
5 
5 
6 
6 
7 
7 
8 
8 
8 
9 
9 
9 

10 
10 
10 
11 
11 
11 

R 

1.32455532 
1.17094380 
1.10742106 
1.91278275 
1.07429604 
1.53 130 127 
1.05463996 
1.35708758 
1.04195488 
1.25972834 
1.92718424 
1.03326655 
1.19875507 
1.641 90223 
1.02704389 
1.1 5763392 
1.478238 19 
1.02242893 
1.12840874 
1.37343860 

??, 

11 
12 
12 
12 
12 
13 
13 
13 
13 
14 
14 
14 
14 
14 
15 
15 
15 
15 
15 

R 
1.94009902 
1.01890886 
1*10680611 
1.30136699 
1.71038608 
1.016161 12 
1.09034087 
1.24924304 
1.56157666 
1.01 397425 
1.07 7 4 7 7 9 1 
1.21010226 
1.458 15096 
1.94956780 
1.01220478 
1.06722278 
1.17983972 
1.38261537 
1.75691196 

TABLE 1. Exceptional modes for the sphere (rn = 1, 1 < R < 2). 

calculat,ions are given in appendix C. I n  each case, the mode was found to be stable 
for all possible values of the conductivity ratio I'. The stability of these modes appears 
to be due in part to the stabilizing influence of the spherical boundaries, which, in 
contrast to those of the cylinder studied in 9 4.1, are not parallel to the axis of r0tation.t 

5. The influence of density gradients 
I n  the previous sections we have found that the simple basic state of a homogeneous 

rigidly rotating fluid with a uniform axial electric current is prone to  two distinct 
types of hydromagnetic instability. This result appears to conflict with that of 
Eltayeb & Kumar (1977), who found that a top-heavy density gradient is required 
to destabilize the basic state within a spherical container. To try to clarify this issue, 
we shall now briefly consider the effects of adding a density gradient to our model. 
Specifically, we shall determine how the consistency condition (4.11) is altered as the 
fluid becomes inhomogeneous. We shall restrict our attention to a spherical container 
and generalize the basic state (2.10) to include a radial gravitational force and a 
radial density gradient, both proportional to  the radius: 

g = -gr/d, VCo = apr/d, 

where g is the acceleration due to gravity a t  the surface r = d of the sphere, OL is the 
coefficient of volume expansion (assumed positive) and /3 is the negative of the 
temperature gradient a t  r = d produced by a uniform volumetric distribution of 

t An attempt to obtain the solutions for the cylinder and sphere as special cases of a spheroid81 
container was thwarted by the fact. that an important approximation leading to (C4) is not 
uniformly valid as the spheroid approaches a cylindrical shape. 
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G = g/Q2d,  

and by the addition of the thermal diffusion equation 

where 
- iwC + V .  VCO = KV'C, 

K = K/Qd2. 

heat sources within the quiescent fluid. A positive value of p means the density in- 
creases with radius. 

The dimensionless governing equations (3.2)-(3.4) must be modified by the addition 
of the term - GCr to the right-hand side of (3.2), where r is now dimensionless and 

( 5 . 2 )  

(5.3) 

(5.4) 

The container is assumed to have arbitrary electrical conLJctivity, as before, but 
infinite thermal conductivity, giving 

C = O  on r = l .  (5.5) 

Assuming the effects of Ohmic diffusion to  be small throughout most of the fluid, 
(3.3) reduces to v = - (o/m) B and (5.3) becomes 

iwC + KV2C = - (w/m) (apd) rB,. (5.6) 

We shall assume that the density gradient is sufficiently small that  the neutral mode 
is given by the solution of (3.1 1)-(3.13). This limits our investigation to the influence 
of small buoyancy effects upon MC waves and precludes the study of full MAC waves. 
The density perturbation C = Cl is found by solving 

iw,Cl + KV2Cl = - (w,/m) (apd) rBO,, (5.7) 

subject to condition ( 5 . 5 ) .  The effect of the density perturbation appears in (3.19) 
as the term --imGC1r on the right-hand side. This contributes to the consistency 
condition (4.1 f ), giving 

where 
2( 1 +Roo) w1 = - iAk(2 + Rw,) + A*7I + RIA, (5.8) 

(5.9) IA = mzG/ V [ -  ICl12+i(K/w,) IOC,Ie]dV/apd/ V IB,12dV. 

The imaginary part of (5.8) yields 

Im w1 = &A*[(M + P )  7Rw0 - + Rw,)]/( 1 + Rw,), (5.10) 

(5.11) 

and 
P = I m I .  (5.12) 

Note that 
(5.13) 

where a = mR(mR - 2). 
Instability occurs if Im w1 > 0 and the parameter M is positive if the fluid is top- 

heavy. Thus a top-heavy density gradient tends to destabilize the fluid provided that 
1 f (1 + a+)* > 0. This is the case for all fast modes and for all ordinary slow modes. 
However, the exceptional slow modes have 1 - (1 + a72)* < 0,  so that they appear to 
be destabilized by a bottom-heavy density gradient. It should be noted that in this 
simple analysis we have not ascertained the concomitant behaviour of the factor P 

where 

M = m2GK/ (VC112dV/(a/?d) oeAdr/ (B,I2dV 
V V 

Rw,( 1 + Rw,)-l = 1 7 (1 + ~ 7 7 - 4 ,  
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in (5.10) and thus cannot make definitive statements about the stability properties 
of the various modes in the presence of density gradients. I n  the following paper 
Xoward (1979)  investigates the effects of buoyancy and dissipation in a particularly 
simple model and elucidates some of the complexities of the stability properties of 
MAC waves. He establishes that the paradoxical role of buoyancy in the exceptional 
modes does not persist if the bottom-heavy gradient is increased sufficiently far. At 
values of the stratification far larger than those for which the present analysis is 
valid, bottom-heavy density gradients become stabilizing once more. As Xoward 
explains, this behaviour may be interpreted in terms of a totally new branch of the 
stability curve for the Eltayeb-Kumar model. As further corroboration we may 
refer to unpublished work of Acheson in the analogous problem of convection driven 
by magnetic buoyancy. He too finds parameter ranges where weak top-heavy density 
distributions are stabilizing. These results may seem less paradoxical when it  is 
recalled that the energy for the instabilities is drawn from field-line curvatures. The 
addition of a small stratification can move the wave frequency into a domain where 
diffusion can better help to ‘release the magnetic constraint’ and so enhance the 
growth of the instability; this effect can be more significant than that of gravitational 
energy release or absorption. 

6. Summary 
I n  the previous sections we have investigated the stability characteristics of some 

simple steady magnetohydrodynamic flows within an axisymmetric container of 
arbitrary electrical conductivity. Our attention was focused upon rapidly rotating 
fluids and upon the geomagnetohydrodynamic basic state 

B(s, z )  = (,up)fr~sl,, v(s, z )  = 0, p(s, z )  = constant, (6.1) 

representing a rigidly rotating homogeneous fluid with a uniform axial electric current. 
We have found that this simple basic flow possesses some unexpected stability 
properties. 

The analysis of $ 2  was essentially a distillation of previous efforts by Braginskii 
(1967), Malkus (1967) ,  Acheson (1972)  and others to find criteria for instability of 
state (6.1) in the absence of dissipative effects. These are referred to as dynamic in- 
stabilities. I n  addition to providing background for the analysis of $3 ,  the aim of 
this section is to demonstrate clearly the principal shortcomings of the dissipationless 
studies: the instability occurs only for a relatively large magnetic field, it also occurs 
for arbitrarily short wavelength and i t  results in a single overturning rather than 
persistent motions. 

The stability of a fluid of finite electrical conductivity confined within a perfectly 
conducting axisymmetric container was analysed in § 3. A consistency condition was 
obtained relating the change in frequency of a dissipationless eigenmode due to 
resistivity of the fluid to integrals of that eigenmode and i t  was found that a class 
of modes exists which are destabilized by the introduction of Ohmic dissipation. These 
unstable modes, referred to as exceptional modes, have the property that the factor 
a = mR(mR - 2) is negative; a is negative provided that m = 1 and 1 < R < 2. With 
a perfectly conducting boundary the unstable modes are inertial modes with a west- 
ward phase speed. I n  contrast to the dynamic instabilities, which occur only if the 
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magnetic field strength exceeds a critical value, the diffusive instability occurs for 
any non-zero value of the magnetic field provided that the Ohmic diffusivity h is 
sufficiently small. 

The analysis of $ 3 was generalized in $ 4 to include the effects of finite conductivity 
of the walls. As in $3 ,  a consistency condition was obtained relating the frequency 
perturbation to integrals of the dissipationless eigenmodes, valid for an axisymmetric 
container. The integrals were evaluated for two container shapes of particular interest: 
a cylinder and a sphere. It was found that for a cylindrical container the instability 
of inertial modes which was found in $ 3 can still occur with the instability strongest 
for short wavelengths. It was shown that the addition of viscosity to the model does 
not remove the instability but does modify the criterion for instability. I n  addition 
it was found that a new class of unstable modes occurs within a cylinder. These modes 
have the property that mR(mR - 2 )  < 0 as before but the modes are now slow waves 
rather than the fast waves. These unstable slow waves travel to the west. It was 
established that a number of exceptional slow modes exist within the sphere but the 
few modes which were investigated in detail were found to be stable. 

The influence of density gradients upon the unstable modes found in $93 and 4 
was investigated in $ 5  for a spherical container. It was found that all fast modes 
and the ordinary slow modes with mR(mR - 2 )  > 0 have standard stability properties 
in response to density gradients: top-heavy gradients are destabilizing and bottom- 
heavy are stabilizing. However the exceptional slow modes were found to behave in 
just the opposite fashion: they are stabilized by a top-heavy gradient and destabilized 
by a bottom-heavy gradient ! This startling property may be explained in terms of a 
new branch on the standard stability diagram (see figure 2 of Soward 1979). 

There is a sense in which there is no dynamo problem for a perfectly conducting, 
simply connected fluid mass: the net flux from the mass can neither strengthen nor 
decay, no matter what the fluid motions in its interior. One would normally expect 
that, as in a rigid conductor, the addition of resistivity will cause the field to  decay. 
However, kinematic dynamos do exist and have been constructed theoretically (e.g. 
G. 0. Roberts, reported in Roberts 1971; Perkeris, Accad & Shkoller 1973; Kumar & 
Roberts 1975). Their emergent flux intensifies rather than decreases when a small but 
positive resistivity is present. I n  this sense, the dynamo is a ‘negative-resistivity ’ 
phenomenon, in analogy with Starr’s (1 968) ‘negative-viscosity ’ phenomenon in 
meteorology. I n  the present paper we have found a surprisingly simple flow which 
exhibits an unusual instability which also may be characterized as a negative- 
resistivity effect because for certain exceptional modes resistivity intensifies the per- 
turbation rather than damping it. One cannot help but wonder whether the negative- 
resistivity character of the dynamo might not be rooted in a simple instability of the 
sort considered in the present paper. 

The present paper was initiated by one of the authors (PHR) during a visit to the 
High Altitude Observatory of the National Center for Atmospheric Research a t  
Boulder, Colorado in 1976. The National Center for Atmospheric Research is supported 
by the National Science Foundation. The completion of this work was supported by 
the National Science Foundation under grant no. EAR 74-22249. This paper is con- 
tribution no. 145 of the Geophysical Fluid Dynamics Institute, Florida State Uni- 
versity, Tallahassee, Florida. 
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Appendix A 
I n  this appendix we shall generalize the analysis of $ 2  by analysing the dynamic 

stability of the basic state (2.1) rather than the simpler state (2.2). The stability of 
this state is examined by writing 

B = Bo+B’, v = v”+v’,  C = C”+C’ 

and neglecting the squares and products of all perturbation (primed) fields. Using 
the Boussinesq approximation and neglecting all dissipation, the linearized equations 
are 

V.B‘= V . V ’  = 0,  

aB’ /a t+~alB’ /a#- (~p , )~7alv‘ /a#-s [B’ .v~-(~~, )Bv’ .v~]  1, = 0, 

a c y a t  + gacf/a# + VT . co = 0, 

(A 2) 

(A 3) 

&’/at + vo. Vv’ + v’ . Vvo + 2 2  x v’ = - Vp’ + C’g + [BO. VB’ + B’ . VBo]/,up,, (A 4) 

where g is the acceleration due to gravity and a,/a# is differentiation holding 1, and 
1, fixed. 

Following Frieman & Rotenberg (1960), Braginskii (1967) solved (A 1)-(A 3) by 
writing the perturbations in terms of a Lagrangian displacement vector q’: 

The vector q‘, which is assumed to be solenoidal, must satisfy the momentum equation 
(A 4) in the form 

(slat + &/a#)  [ a p t  + @,/a# + 2(Q + 5 )  1, x 1 q’ = - VP’ + Fh’) ,  

F(?’) = 72(al/a# + 21, x ) alqt/a# - a ~ ) ,  

(A 6) 

(A 7)  
where 

and 

The two statements (A 8) defining the tensor a are equivalent because the basic state 
(2.1) is in magnetostatic balance, requiring 

2 o s a g * / a z  = I,. g x vco, (A 10) 

a generalization of the thermal-wind equation. 
Again seeking the mode of maximum instability by introducing a right-handed 

system of local Cartesian co-ordinates (v, 6 ,  #), where 1, makes an arbitrary angle x 
with 1, as shown in figure 1, and assuming the perturbations to be proportional to 
exp [i(m# - w t ) ] ,  we may write (A 6) in component form as 

[m2? - (w - m6)2 + av,] 7: + aUsr; + 2i[rn2+ + (a + 6) (w - m5)] 7; sin x 
= -aPl/av,  ( A I I )  
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~Y-6~7; + [m272 - (W - m[)2 + olf;c] 7; + 2i[m2T2 + (Q + 5)  (w - m [ ) ]  7; COS x 
= - api/ag, (A 12) 

- 2i[m72+ (Q + [) (w -my)] [y: sin x + 7; cos x] + [m272 - (w - m{)2] 7; 
= -imp'/s. (A 13) 

The condition that q' be solenoidal is 

a(sT;) /av + a ( s ~ ; ) / a [ +  im& = 0. (A 14) 

We now seek a condition for the system to be stable a t  a local point P to disturbances 
whose wavelength is arbitrarily short in the 6 direction. That is, we let a/a[ = 1 and 
consider 1 --f co. From (A 14), 7; = O(Z-ly+) and, from (A 12), p' = O(l- ly$) .  Thus to  
leading order in Z-l, (A 11) and (A 13) reduce to  

[m272-(w-mm5)2+a,,]7:+2i[m72+ (Q+[) ( y - m c ) ] q i s i n ~  = 0, (A 15) 

- 2 i [ m 2  + (Q + 5) (w - me)] 7: sin x + [m2+ - (w - m{)2] 7; = 0. (A 16) 

The condition that modes of this form exist is thus purely algebraic (cf. Gilman 1970): 

(A 17) [ m 2 7 2 - ( ~ - m [ ) ~ ]  [m272- ( ~ - m c ) ~ + a , , ]  = 4[wr2+ ( Q + c ) ( ~ - m c ) ] ~ s i n ~ x .  

Neglecting inertial terms reduces this to 

m272(m272 + a,,) = 4[vw2 + Q(w - m5)I2 sin2 x. (A 18) 

m272 < -a,, (A 19) 

(A 20) 

A sufficient condition for instability is 

for some direction 1, a t  some point P. According to  (A 8), 

a,,, = g,aCO/av + 2Qs(ag,/av) sin x, 
where g, = g. 1,. It is apparent that  the most unstable mode has a zonal wave- 
number m = 1, giving 

If the fluid is homogeneous, then CO = 0 and, from (A lo), [* = c* (s )  and (A 21) 
reduces to 

72+g,aCo/av+ 2Qs(ac,/av)sinx < 0. (A 21) 

72 + 2Rs(d{,/ds) sin2X < 0. (A 22) 

2 R d c l d z  < s d ( ~ ~ / s ) / d s .  (A 23) 

In  this case the most unstable direction is 1, = l,, giving for Q > 0 

I n  the absence of shear, (A 23) reduces to (2.9).  
It should be emphasized that the Cartesian analysis of this appendix does not 

model the curvature terms accurately. Hence (A 21) is not valid near the polar axis 
(s small). That is, while (A 21) predicts instability near the polar axis for any top- 
heavy density distribution, a stability analysis including curvature effects might not. 
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Appendix B 
In  this appendix we shall generalize the analysis of $ 3  leading to the consistency 

condition (3.24) for the basic state (2.1). Assuming harmonic dependence on g5 and t ,  
the dimensionless problem is 

- ~ W V ’  +vO.VV’ +v’ .  VVO+ 21, x V’ = - Vp’ + C’g + BO. VB’ + B’ . VBO, (B 1)  

-iwB’ = V x [v’ x Bo+vO x B’-AV x B’], 

i ( w  - mc) C‘ = V’ . VCO, 

V . V ’  = V.B’ = 0, 

(B 2) 

(B 3) 

(B 4) 

n .B’=O,  n x ( V x B ’ ) = O ,  n . v ’ = O  on W ,  (B 5 )  
with 

where we have used the scaling of 5 3 plus ! 2 d  for gravity; Co and C‘ were dimension- 
less to  start with. 

Following Braginskii & Roberts (1975), the formalism of appendix A may be 
generalized by introducing a separate displacement vector q; for magnetic field lines 
and replacing (A 5) ,  by 

though preserving (A 5)2 and (A 5)3. These assumed forms satisfy (B 3) and give 
(B 4) automatically. The remaining equations give 

B’ = V x (1; x BO), V . &  = 0 (B 6) 

- ( W - m C )  [w-mC+ 2 i ( l +  5 )  1, x ]q’ 

= - Vp’ - s(q’ - q;3) V(77 - ~ ~ m ( m  - 2i 1, x ) q;3 - a(q’), (B 7) 

(B 8) - ~ W T ~ X  BO = V’ x BO+VOX B’-A(V x B’-VO’), 

where a is given by (A 8) and a‘ is a function of integration. To determine (3‘ we take 
the I, component of (B 8): 

Using (B 6)  once more, we may write (B 9) as 

im@‘ = 81,. V x B’. 

0’ = S[a(7&,)/az - a(7y;,)/as]. 

is7(w - mC) (q’ - qA)m = - R1, x (V x B’ - V W ) ,  

(B 9) 

(B 10) 

Now the cross-product of (B 8) with 1, may be expressed as 

(B 11)  

where the subscript m denotes the meridional part. Since both q’ and q;j are solenoidal, 
we may write 

The vector A‘ = V x B’ - V W  has no azimuthal part, allowing us to write 

q’ = qA+ V x G’. (B 12) 

iml, x A’ = s(V x A’)m. 

Since the cross-product of two meridional vectors has no meridionsl component, we 
have 

(V x G’)m = A [V x 
”-”’)] , 

m7(w--C) m 
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or 

+ VY’, 
VxB’-V<D’ 

G’ = A 
m7(w - m5) 

where Y‘ is an arbitrary function. The following analysis is simplified if we choose 

Y’ = A @ ’ / ~ T ( u  - mc), 
which Eives 

v 

1 

(7(@ - m J  I , G’ = - -- ( ~ + . V X  B‘)V 

Now (B 7)  may be written as 

[ (W-m5)2-m2~2]r j ’+2i [ (W-mm5)(1+5)+m~2] 1,xq’ 

- 2(q’. V<*) sl, - (q’ . VCO) g - Vp‘ 

= 7 7  - m2 + 2im1, x ](q’ - &) + [(q’ - qi). V(T’)] ~ 1 , .  (B 17)  
The boundary conditions may be expressed as 

n.q’=  0, n . & =  0, n x V x B ’ =  0 on W .  (B 18) 

Note that from (B 18), 
n x G ’ = O  on W .  

The first step is to obtain neutral dissipationless modes by neglecting A and solving 
the eigenvalue problem 

with 

where wo is the eigenfrequency corresponding to the eigenvector qo. We shall assume 
that the modes obtained from (B 20) do not contain resonant surfaces on which 
5 = w,/m, t  These surfaces are avoided in the special case 6 = 0 by excluding any 
stationary mode oo = 0. We shall further assume that the eigensolutions are not 
localized as in appendix A but extend throughout the fluid. 

With A = 0, the displacements q‘ and q& are identical as in appendix A. When A 
is allowed to increase from zero, q’ and q& each change and by different amounts. 
Also the basic frequency wo is perturbed. Thus we may writ,e 

It is tempting to  replace G’ in (B 21) by GO, where Go is given by (B 16) and (B 6) 
with w = wo in (B 16) and q& = qo in (B 6). Unfortunately this substitution is not 
uniformly valid and its use a t  this point in the analysis could lead to erroneous results. 

t This assumption precludes the resistive tearing mode of plasma physics (Furth et al. 1963); 
the relevance of this mode to the geomagnetic secular variation is currently under investigation. 
If  present, the growth rate of the tearing mode should be asymptotically larger than the in- 
stability considered here and in $3, but also should be asymptotically smaller than the in- 
stability considered in $4.  
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That is, while q1 and V x G’ are each of order A throughout most of the fluid, each 
becomes larger that O(A) in thin magnetic boundary layers near W .  We shall indeed 
replace G’ by Go, but at the appropriate point in the analysis. First substitute (B 21) 
into (B 17) and, making use of (B Z O ) ,  obtain 

The consistency condition is obtained by scalar multiplying (B 22), by qt and 
integrating the result over the volume V of the fluid. Following appendix A, the 
consistency integral may be expressed as 

2w1 1 [(wo - m5) 1’1012+ i( 1 + 6) 1,. ‘lo x ’ltl d‘V 
V 

= j y ( V  x G’.[$y,+,V(~~)-(w~-m6)~q0*+2i(~~-m5)(1 +6)1,xq$])dV. 

(B 23) 

Using the divergence theorem and (B 19)) we obtain an alternative and more useful 
form : 

2 w 1 j  [ ( W o  - m6) 11012 + i ( l+  5)  1,. ’lo x $1 dV 
V 

= Iy (G’ . V x [s~&V(T~)  - (wo - m[)2q$ 

+ Zi(wo-m(;) (1 +C) 1 , ~  q,*]}dV. (B 24) 

The advantage of (B 24)) compared with (B 23)) is that G’ is not differentiated. We 
wish to determine w1 correctly to order A. Writing (B 6) as 

B’ = i m q &  - (& . V T )  sl,, 

i t  is apparent that B’ = O( 1) everywhere within the fluid. With perfectly conducting 
boundaries, the boundary layers in the fluid near W are weaker than for finitely con- 
ducting boundaries, specifically 

q& = ’lo+ O(R4). 
Thus we have 

B‘ = i m ~ q ,  - (qo. VT) 81, + O(A4). (B 25) 

Now G’ involves derivatives of B‘, which magnify the error in (B 25) within thin 
boundary layers. However, we need only the integral of G’ in (B 24) and the integral 
of the O(1) error over a thin boundary layer produces at  most an O(A*) error in the 
evaluation of that integral. [The differentiation in (B 16) and the integration in 
(B 24) effectively cancel each other for purposes of error estimation.] We may now 
redace G’ bv 
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in (B 24), making a negligible error in doing so. Now (B 24) and (B 26) provide formu- 
lae for calculating the perturbation frequency w1 in terms of the neutral eigenmode 
(qo,po, wo).  Had we assumed the container walls to have non-zero resistivity, it  would 
not have been possible to obtain such formulae without detailed analysis of the 
boundary layers near W .  Such analysis is carried out in $4. 

Appendix C 
The purpose of this appendix is to simplify the integral I ,  given by (4.24), for a 

spherical container and to evaluate its imaginary part for several eigenvaluea. With 
spherical co-ordinates 

p = r ,  Po = 1, h, = 1, 1, = l,, y = 0, 

h, = r ,  I,+ = cos8, s = rsin8, z = rCOSe, 

dW = 2nsinOd8 = -27~d2, dV = 2nr2sin8drdO = nd(s2)dz .  

The integral I may be expressed as 

I = (14 + 1 5 ) / 4 3 ,  (C 1)  

where 

In writing (C 4) we have neglected & + compared with z /wo since l /wo  = O ( T - ~ )  for 
7 - g  1.  

Now 
w0 = -+(2-R)72, (I, = 4 ( i + i ) ( 2 - ~ ) h i - + r - 4 ,  

q* = &( 1 + a*i) 7R-f I ( 1  f R z ) / z ] f ,  a* = sgn [ T z( 1 f Rz)], 
aq*/az = - q 4 2 4  1 & ~ ~ ) - j - 1 ,  

+ 2rz(1 - R ~ )  ] (1 -.2)4po*dz, (C 5 )  
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If n - m is even (odd), then p,, B,, and Boo are even (odd) while Bo4 is odd (even). 
Thus as z -+ -2, A+ + A ,  if n-rn is even and A* + - A ,  if n - m  is odd. Also 
S+ + S, as z -+ -2. This is sufficient to determine that the integrands of I4 and I, 
are even functions of z and the integrals may be collapsed to the domain [0,1]. 

Since I, is real and positive, the sign of I m I  is the same as that of Im ( I4+&).  
From (3.11) and (3.14) it may be seen that it is possible to choose the phase of the 
solution such that B,, and B,, are real while Qo, po  and B,# are imaginary. Thus A* 
are purely real. Setting 

where N is real, we may write 

p ,  = i~2(R - 1) (1 - z2)+ N ( z ) ,  

Im14= - 2(R - R)4 - 1) r+/ol [A+ (2 - sz) + A-($-+ $-- + y+A+z+zy"-] 
x (1 - 22) N ( z )  dz, (C 7) 

(C 8) 
1 2 

Im I5 = - (2 - R)4 ,.+lo [A+ A: - A A 2 ]  zdz, 

where 

Specifically, 

and 

A* = -Im[(l-i)S+] = ReS+-ImS+, (C 9) 

2A* - I? 
1 f [R + r ( 2  - R)] z 

- - Re Sf - Im 8; 
Y* = 

I?( 1 & Rz) 

1 + Rz+ [r(2- R)z(Rz- l)]* 

1 + [R + (2 - R)] z 
A+ = r 

(2-R)z 4 -l 
for 0 < z < R-l, [k + (I?( 1 - Rz)) ] 

1 - Rz - {r( 2 - R) z(Rz - 1)]4 
1 - [R + I? (2 - R)] z 

for R-l < z < 1. 

The integrals in (C 7) and (C 8) were evaluated for three eigenmodes: 

6) m = I, n = 3, R = 440- 5 = 1-32455532, 

N ( z )  = $(R2-5)(5z2-1), A*(z) = gR(2-R)(17~)(152TR);  

(ii) m = 1, n = 4, R =  1.17094380, 

N ( z )  = Z ( 7  - 3R2) (3 - 7R2), 

A*(z) = ( I  T Z) [7(9R2 - 6R- 7)z2 f 42(R- 1 ) 2 ~ -  3(3R2+ 14R- 21)]; 

(iii) m = 1, n = 5, R A  1.91278275, 

N ( z )  = (R4- 14R2+21) (21z4- 14z2+ 1), 

A*(z) = 56(1Tz)[3(- 18R3+21R2+56R-63)z3 

T (45R3-54R2- 147R+ 168)z2+(20R3-25R2-54Rf63) z  

- + ( 15R3 - 20R2 - 45R + 54)]. 

The integrals were evaluated numerically for a wide range of values of r, the con- 
ductivity ratio, and each of the modes was found t o  be stable. As an independent 
check, the integrals in (C 7) and (C 8) were evaluated analytically in the limit -+ 0 
and were found to give stable modes. 
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